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ABSTRACT

We present a new class of synthetic acceleration methods which can be applied to transport
calculations regardless of geometry, discretization scheme, or mesh shape. Unlike other synthetic
acceleration methods which base their acceleration on P1 equations, these methods use acceleration
equations obtained by projecting the transport solution onto a coarse angular mesh only on cell
boundaries. We demonstrate, via Fourier analysis of a simple model problem as well as numerical
calculations of various problems, that the simplest of these methods are unconditionally stable with
spectral radius < ¢/3 (c being the scattering ratio), for several different discretization schemes in slab
geometry.

. INTRODUCTION

The numerical solution procedure for realistic neutral-particle transport problems is necessarily
iterative; most methods in use today iterate on the scattering sourcel-4. It is well understood that an
unaccelerated scattering-source iteration can converge arbitrarily slowly: for model (infinite medium,
constant cross-section, constant mesh spacing, isotropic scattering) problems the spectral radius is c,
the scattering ratio, which can be arbitrarily close to unity>. Hence, many techniques for accelerating
this iteration have been proposeds-2l. Each of these methods involves, within each full iteration, a
fixed-source transport calculatdon followed by an "acceleration” calculation designed to improve the
transport result. The methods which have been most successful make use of a "low-order”
approximation to the transport equation (such as the diffusion equation) in their acceleration
calculations; these are called synthetic acceleration methods3-8.9-21,

The 1dea behind synthetic acceleration can be explained as follows. Given an equation of the
form

[A-B]f = s, (1



where it is difficult to invert [A — B] but relatively easy to invert A, we might try the iterative scheme
firl = Mf!L + A-ls, (2)

where M = A"1B and [ is the iteration index. The eigenvalues of M determine the convergence
properties of this iteration. In particular, if the magnitude of the largest eigenvalue (the “spectral
radius”™) is less than unity the iteration will converge regardless of the starting guess; otherwise, it will
not.

If we denote the converged solution as f (no superscript), then it is easy to show that
[A-BJ( - f#1) = B(fH — £, 3)

That is, the converged solution f is obtainable at any time (if one is willing to invert [A — B]) given
only the knowledge of two successive iterates. Of course, we are not interested in inverting [A-B],
but suppose there exists a "low-order" approximation, L, to the "high-order" operator [A — B], with L
easily invertible. Then eqgns. (2) and (3) suggest the following iteration scheme:

fH2 = MFf! + A-ls, (4a)
L@ — f+12y = B(fH+2 — 1), (4b)

This is synthetic acceleration:8. The logic is simple: if L is "close” to [A — B], then f /+! should be
"close” to the converged solution f.

Synthetic acceleration of transport iterations was first proposed by Kopp® in 1963, who used the
diffusion equation as his low-order approximation to the transport equation. In this case eqns. (4)
become

[QeV + odyHZ = o, + g ()

[-¥*DY + &) (¢o'*! ~pH*12) = O, (9g'2 = 0gh) (5b)

Kopp's work, which was limited to the continuous slab-geometry equations, was extended and
applied to the discretized Spy equations by Gelbard and Hageman’, who found that the synthetic
method worked well in XY geometry for small meshes but reported no numerical results for large
meshes. Reed8 later showed that, given the diamond-differenced transport equation and a centrally-
differenced diffusion equation, the synthetic iteratdon could diverge for meshes larger than about 1.2
mean-free paths (mfp’s).

Alcouffe recognized in the mid-1970s that the reason for this instability was an inconsistency in
the differencing of the transport and diffusion equations; through careful “consistent” differencing of
the diffusion equation he was able to construct a diffusion-synthetic acceleration (DSA) technique for



the diamond-differenced transport equation that was stable for all mesh sizes, with spectral radius less
than 0.23¢ for a simple model problem3.10. Alcouffe actually created three different DSA schemes,
two of which are always nonlinear, the third being nonlinear in general but linear for some problems
(such as the model problem)!0. The nonlinearities arise because some parameters in Alcouffe’s
acceleration equations require division by fluxes from the most recent transport calculation. This
forces the use of a negative-flux fixup, for negative or zero fluxes could be disastrous; however, if
too many fixups are used the iteration diverges -- the fixups effectively alter the transport differencing
scheme, making it inconsistent with-the acceleration equations!3. ,

Conceptually, Alcouffe’s method can be applied to any transport differencing scheme regardless
of geometry or mesh shape. At this point, however, it has not been attempted on a non-orthogonal
mesh22; further, an extension to the linear characteristic differencing scheme produced a method which
was unstable for large meshes2223. Thus, it is not yet clear whether the method is generally useful for
non-diamond differencing and/or non-orthogonal meshes.

In the early 1980s, Larsen extended Alcouffe’s reasoning and created a “four-step procedure”
whereby one could derive, beginning with virtually any differencing of the transport equation, a
consistently-differenced set of linear P1 acceleration equations which yielded spectral radii less than
c/3 (for the model problem in slab geometry)>.1415, Larsen's scheme can be applied to virtually any
transport differencing scheme, apparently without regard to geometry or mesh shape; in these regards
it represents a significant advance over the earlier nonlinear methods. However, the P1 acceleration
equations are in general algebraically complicated -- it has yet to be shown that they can be solved
efficiently enough to warrant their use> -- whereas the diffusion equation used by Alcouffe’s nonlinear
DSA method is amenable to solution by a very efficient multigrid scheme.

Recently Khalil presented a nodal DSA method whereby nodally-differenced transport iterations
can be accelerated by nodally-differenced diffusion equations!?. Khalil’s acceleration equations appear
to have the same form as Larsen’s, but his method differs from that of Larsen in the way that those
equations are derived?4. While it appears that Khalil’s method is rapidly convergent, his acceleration
equatons may be just as difficult to solve efficiently, in general, as are Larsen’s.

In summary, no acceleration technique developed to date has been shown to possess all of the
following desired properties:

1)  Unconditional stability and rapid convergence (i.e., spectral radius

significantly less than unity for all mesh sizes), |

2)  Generality with respect to geometry,

3) Generality with respect to discretization scheme,

4) Generality with respect to mesh shape,

5) Easily-solved low-order equation,

6) Accelerated solution equal to unaccelerated solution.
Alcouffe’s nonlinear DSA apparently possesses properties 2, 3, 4, 5, and 6; property 1 has been
shown only for diamond differencing on an orthogonal mesh when fixups do not overwhelm the
method. Larsen’s 4-step DSA appears to have all properties except 5, which is of course crucial.
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Khalil’s nodal DSA appears to possess the same properties as Larsen’s method, although 2, 3, and 4
are not certain?4. (We note that further research into these acceleration methods may eliminate some of
the drawbacks listed here.) Property 6, which all true acceleration methods possess, has been
included to distinguish the methods discussed in this paper from a related class of rapidly-convergent
schemes (not true acceleration techniques) which have been called “projected discrete-ordinates”
methods?S.

As a step toward fulfilling all six of the above criteria, we present here a class of synthetic
acceleration methods for transport calculations which differs from earlier methods in the choice of a
low-order operator. Instead of using P1 or diffusion equations, we derive (beginning with the
discretized transport equation) acceleration equations by projecting the transport solution onto a coarse
angular mesh only on cell boundaries. We refer to methods generated in this manner as “boundary-
projection acceleration” (BPA) methods. We note that Lawrence, working independently, has
developed a BPA method which he calls “interface-current synthetic acceleration” (ICSA)!9; he has
obtained promising numerical results with a variety of transport differencing schemes in slab
geometry, and with various nodal transport schemes in XY and XYZ geometries.

We show here that BPA methods can be applied regardless of geometry, discretization, or mesh
shape (properties 2, 3, and 4). We also show, via numerical results as well as Fourier analyses of the
model problem, that in slab geometry the BPA methods are unconditionally stable and rapidly
convergent (property 1), with the simplest method having a spectral radius < ¢/3. (This is true only if
the projection is done properly.) We argue that similar results can be expected in other geometries,
although the acceleration equations may be necessarily more complicated. The remaining question is
the ease of solution of the acceleration equations (property 5); we show that the acceleration equations
are easily put into a form convenient for iteration on interface quantities, but the question of how
efficiently this iteration can be performed is left for further research.

In section II we give a general-geometry, general-discretization, general-mesh, 4-step derivation
of a fairly general BPA method, borrowing the philosophy and terminology of Larsen’s 4-step DSA
procedure. (This derivation serves as our proof that the method possesses properties 2, 3, and 4.) In
section III we present details of the slab-geometry implementation of the method, paying close
attention to the crucial projection step. Section IV contains results from slab-geometry model-problem
Fourier analyses of weighted-diamond, linear discontinuous, and linear moments discrete-ordinates
ransport schemes accelerated by a few simple BPA methods; numerical results verifying the analyses
are also presented. We draw conclusions in section V, noting areas that need further study.

0. GENERAL DERIVATION

As mentioned above, the basic idea behind synthetic acceleration is the use of a “low-order”
equation to accelerate the convergence of a “high-order” iteration. With DSA schemes, high-order
means transport and low-order means P1 or diffusion. Equivalently, high-order means fine-mesh in
angle and low-order means coarse-mesh (linearty anisotropic) in angle. With the BPA schemes



described here, high-order also means fine-mesh in angle and low-order also means coarse-mesh in
angle, but the coarse angular mesh of the low-order equation is imposed only on cell boundaries.
Furthermore, the coarse mesh is not restricted to the P1 space, but is left to the imagination.

We begin our derivation of the BPA method with the discretized within-group transport equation
(assuming isotropic scattering, for simplicity) written in the following form:

017 =

MOULLJ+1/2 =

where  ¢;
Win(our),i

Sy

Sp,i

T/ 0o + Ty Win 12 + sy, (6a)

Rvi Qoil + Rbi Miruhllz + Sb,i (6b)

vector of scalar flux unknowns in the interior of cell i,

vector of incoming (outgoing) angular fluxes on the
boundary of cell i,

contribution from the external, fission, and inscatter sources
to the scalar flux in the interior of cell i,

contribution from the external, fission, and inscatter sources
to the outgoing angular flux on the boundary of cell i,
matrix giving the first-flight contribution to the outgoing
angular flux due to within-group scattering in cell i,

matrix giving the first-flight contribution to the outgoing
angular flux due to the incoming flux on the boundary of cell i,
matrix giving the first-flight contribution to the scalar flux
in cell i due to within-group scattering in cell i,

matrix giving the first-flight contribution to the scalar flux
in cell i due to the incoming flux on the boundary of cell i,

with [ the iteration index. With the exception of nonlinear schemes such as the exponental method26,
almost any transport discretization in any geometry (regardless of mesh shape) can be written in this
form -- it is simply a statement of linearity.

We proceed by defining a coarse mesh and creating projection matrices which take us back and
forth between fine- and coarse-mesh function spaces:

Pi_. = coarse-to-fine “projection” matrix for the incoming boundary of cell i;
gives a fine-mesh representation of the coarse-mesh flux,

Pi._¢ = fine-to-coarse projection matrix for the outgoing boundary of cell i;
projects the fine-mesh flux onto the coarse mesh.

We define coarse-mesh boundary fluxes and an incoming “residual” as follows:
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Lo /*12 = vector containing coarse-mesh outgoing flux unknowns, cell i
= Pl %umj 2 (Ta)
Wees #*1/2 = incoming flux “residual”

Nlin.:hm — pif(__C limhllz (7b)

With these definitions, we are ready to proceed- with a four-step BPA procedure which is much like
Larsen’s four-step DSA procedure.

Step 1 -- Project onto coarse mesh. We replace Wi, #*!2 in eqns. (6a) and (6b) using the
definition egn. (7b), then operate on eqn. (6b) with Pi._ ¢, obtaining:

le+1/2 = Tvi Qoil + Tbi [Pif(—-c lin"1+1/2 + wres,lj+1/2] + Sy (8a)

louu1+1,2 = Pic«—f Rvi Qotj + Pic(—f Rbi [Pif(—-c limj+1/2 + lures,l'l+1/2] + Pia—-f Sp, (Sb)

Step 2 -- Define acceleration equations. We change all iteration indices, except that of the
incoming residual, to [+1:

QoaJH = TviQoiH'1 + Tbi [Pif(—-c Iin.lbl + !ures.i“-l,z] t Svi (9a)

-'Iout.11+1 = Pic«—f Rvi Qoil+1 + Pice—f Rbi [Pif(—c lin.ih'l + -‘Mres,ilﬂ/z] + P ice-—f Sp.i (9b)

Step 3 -- Subtract unaccelerated equations from accelerated equations:

.f01'1+1 = Tvi (Qoi“'1 - Qo[’) + Tbi P l'f<——c .bin,[l*‘l (10a)
wittl = Pl fR @0 ~ 00 + Plocg Ry Pipe o bin 1 (10b)
thre f°‘1+1 = Qo‘.1+l _ QO[H-UZ

Binou! = Jinoun* ~ Jingouni*? -

Step 4 -- Manipulate the acceleration equations (10) into a form convenient for solution. First we
rewrite (10a) as follows:

£,/ = [I-T "L (T 30,12 + Tyi Pip by 1), (1D

where we have defined &¢,/*12 = ¢,#*12 - ¢,/ and noted that @,+! — 9,4 = /1 + 3Q,,/+1/2. Next
we insert eqn. (11) into eqn. (10b) to obtain:



-bout,11+1 = Mb,i !—)irl.;1+1 + Mv,i ®0i1+1/2 (12)

where My, = Pic ¢Ryi Pig o + Pio Ry [I-T,f 1Ty Pig,
M,; = Pi R/ + Pi (Rj[I-T 11Ty

Equation (12) is amenable to solution via iteration on the interface quantities by our); UpON convergence
of this iteration, equation (11) can be used to obtain the cell-interior quantities f, which are then used to
update the scalar fluxes for the next iteration.

Implicit in the above derivation is the assumption that the coarse-mesh function space at any point
on a cell boundary can be separated into two distinct half-spaces. That is, the coarse-mesh unknowns
are clearly divided at cell boundaries into an “incoming’ set which depends only on incoming angular
fluxes and an “outgoing” set which depends only on outgoing fluxes. This assumption precludes the
use of the P1 function space, for example, because the P1 unknowns are full-range integrals of the
angular flux. We stress that this assumption is not necessary for the implementation of the BPA
method; it merely simplifies the derivation a bit. Curious readers may see the fully general derivation
in the appendix.

We have thus far ignored the details of the crucial projection matrices as well as the economics of
solving the acceleration equations (11) and (12). We have also ignored an even more fundamental
question: will the BPA methods work? The question of projections will be addressed in the next
section; the question of economics will be discussed briefly in Section V, but essentially left as an area
for further research. The question of how well the BPA methods work is answered, for slab
geometry, in Section IV.

OI. IMPLEMENTATION IN SLAB GEOMETRY
The BPA equations, derived above for the general case, will be developed here in detail for the

diamond-differenced discrete-ordinates transport equation with isotropic scattering in slab geometry,
which is written:

Hm
_Ax_.(\ynu#lﬂl“/z - Wmi—l/ZlHﬂ) + G \lejﬂl2 = Oy ¢oi1 + Qi (133)
1
Wm11+1/2 = T(Wmi+1/‘21+1/2 + \Vmi-1/21+1/2) (13b)
M
¢oil+l/2 = m2=1wm \Vmi1+1/2 (13C)

where the notation is standard. We can rewrite eqns. (13) as follows:



J7N

F(Wmougzl+l’2 ~ Umini*12) + G Yn#2 = G500 + Qi

i

1
\Vm‘1+1f2 = —Z-(Wmout,il+1f2 + Wmirl,lj+1/2)

M
¢011+1/2 = mz— Iwm Wmil+1/2

where i { Vmis1 22, U >0,
Wmouti Vit i, <0,

Yo 12 = { Wi/ i >0,

- Ymin 22, oy <0.

Equations (14) are easily manipulated into the form used above in our general derivaton:

oil +72 = Tvi ¢mj + Th’ Min_th'lﬂ + Sy
MOut.z‘, 2 = Rvi ¢oil + Rbi mm,zj w2+ Sbi
where
T - Emi (T, isalxl iX)
i = C; f1sa matri ,
v [ mZ_l m 2+ £ v S X amx
2wy,
Tyhm = T e (T, isa 1 x M matrix),
mi
1 M Emi Ami
i "~ o nfi:'l m 7 Emi
_ 2¢; Em; .
Rlm1 = T e (R¢ isan M x 1 matrix),
mu
. 2- Emi L .
Ry lnm = T e (Ry 1s a diagonal M x M matrix),
mi
- 2 Emi Gmi
Sp; = ,
" S 2+ &)
o; Ax;
Erm - #ml ’

(14a)

(14b)

(14c)

(15a)
(15b)



C; = G5 /0;.

Before deriving acceleration equations from eqns. (15), we must choose the coarse angular
mesh, which we will impose at cell boundaries, and create projection matrices. For our first example
we choose a “double-Py” (DPQ) approximation -- in the low-order equations the angular flux on cell
boundaries is represented by a constant in each angular half-space:

]+i+1/2 » B> 0
Jinp = (16)
i, #<0

Our next task is to determine projection matrices P, ¢ and P;_ . which will connect the coarse-
and fine-mesh function spaces as follows:

J+i+1/‘2 = E>0[Pc<—f]l.m Wmi+1f2 (172)

Ymi+12 = [Pfe—c_]m.l J+4'+1/2 T Wresm,i+l ’ /'lm>0 (17b)
(Analagous relations hold for y, < 0.) We consider first the coarse-to-fine projection. Since the
coarse-mesh flux is a constant in each half-space, it makes sense to let the coarse-to-fine projection of
that flux be the same constant. That is, we choose:

[Pft-—c]m.l =1, Hp>0, (18)

The fine-to-coarse projection is also fairly straightforward. We simply pick some characteristic of the
fine-mesh flux which we think is important, and require the coarse-mesh projection to preserve that
characteristic. For example, if we think partial currents are important we will require:

!J-EO wn.u'nk Lm2>0 [Pc(—f]l.m \Vmi+1/2 ] =/"m>0 Wm#xnk \Vmi+1/‘2 (19)

with k=1. This implies that
Wbl
P = —) >0, 2
[ C(—f]l,m z wn‘u_nk Hm ( 0)
>0

again with k=1. If on the other hand we believe half-range fluxes are more important than half-range
currents, we can choose k=0 in equations (19) and (20), giving a different projection matrix and
therefore a different acceleration method.

Once we have chosen the projection matrices we are ready to proceed with the 4-step procedure
described in Section II. Step 1 involves the actual projection, which gives eqgns. (8). Step 2, defining
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acceleration equations, gives eqns. (9). Step 3, subtracting the accelerated equations from the
unaccelerated equations, gives

foi“l = Tvi (¢oil+1 - q)ml) + [Tbi P if(—c] bin,11+1 (213)
Dout.i“l = [P ice—f Rvi] (¢oil+1 - ¢oil) + [P ic(-—f Rbi P if«—cj Din..[“-1 (ZIb)
where f0l1+1 = q)oil-f-l — ¢0il+1,2 ,
Din,im = [b, /21+1 , bt le+1]t ,
u“1+l = [b+‘.+1,21+1 , b—i—1/21+1]t ,
brivig*! = Tl - Jeiaph'?2,
T M Emi
v =¢ VW ,
‘ nél " 2+ Emi
r 2w, 2wy,
[Ty Pége] = ’ ’
P rrp i rre
[ < AWl €y ¢ 2Winltmk e [t
P i = , ,
Pee R | o4 #§>0 2+¢, o H§<0 2+¢€;

. . _ Ci  WmlpK 2-€n) ¢ Wpligk 2-en)
[Plec Ry Py ] = diag ’

oy ;E)o 246 o E’nw 2+Ey
oy = X k|
+ e Wntln
o = 2 Wl
Un<0

It is a simple matter to eliminate f,; from equations (21) to obtain an equation for the interface quantities
Dinjour; (Se€ equation (12)). In slab geometry, the resulting system can be put into tridiagonal form
which can be efficiently solved by LU decomposition with forward and back substitution; this was the
method used to generate the numerical results shown in the next section.

As a second example, we choose “double-P;” (DP1) for our coarse-mesh function space. That

Is, in the low-order equations the angular flux on cell boundaries is represented by a linear function in
each angular half-space:
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—_ {JO+,i+1f2 Potm—1) + Jiris12 Pilm =1l >0 -
i+1/2 =
' Jooiriz Po@m + 1) + Jiiip Pi@m + 1), Mm < 0

where P,(x) is the nth Legendre polynomial.

Our next task is to determine projection matrices P, and Pg_. which will connect the coarse-
" and fine-mesh function spaces as follows:

Jovieiz = z (Peetlim Vmisin (23a)
Hm>0

Tisty = 2 [Pecflom Ymirin2 (23b)
[J.m>0

Vmistz = [PredmiJorisin + Predm2divicizg + Vresmitl » Hm >0 (23¢)

(Analagous relations hold for j, <0.) Again we choose a simple form for the coarse-to-fine matrix
P¢_., based on egns. (22) and (23c):

Ptecdm1 = Poim-1), Hm>0, (24a)
[Pf(—ch.Z = PI(Z;Lm—l), #m>0' (24b)

The fine-to-coarse projection Pg_. is obtained, as it was in the DPO case, by choosing some
important characteristics of the fine-mesh flux and requiring that the coarse-mesh flux retain them. For
example, if we believe that half-range angular moments are important we might require:

T w0 Ltall) = . WO Viistp = Land2, @250
Hp>0 Hm>0
where Jirinn) = Jorinn Pon -1 + Jiin PiQn -1, o> 0, (25b)

with k(j) determining which half-range moments are to be preserved under the projection. (For
example, if we think it best to preserve half-range currents and fluxes, we can let k(1) =0 and k(2) =
1. If we prefer odd half-range moments, we let k(1) = 1 and k(2) = 3.) Equations (25) can be
compactly written as follows:

A l+i+1/‘2 = B lu+i+1/2 s (26)
where Ajl = pg;,owny_nk(j)P,_l(Zun -1 (a 2 x 2 matrix),
Bpm = W llmk0) , >0 (a 2 x [M/2] matrix),
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Livin = ovirip s J1sinn 1t
Yz = ol Vv 1 >0

This implies that

[Pce—f]j,m = [A-1B] jm > =lor2, u,>0. (271

Once the projection matrices P, ¢ and Py are determined, we proceed with the four-step
procedure to arrive at low-order equations for the interface quantities b;,, exactly as before.

To summarize, projection matrices are obtained by first deciding how many unknowns will be
used to describe the coarse-mesh angular flux (i.e., determining the coarse-mesh function space), then
stating mathematically which characteristics of the fine-mesh (high-order) flux will be retained by the
coarse-mesh (low-order) flux. The success of the resulting acceleration scheme will depend on how
well the low-order equations approximate the high-order equations, which in turn depends on which
characteristics are “preserved” by the projections.

IV. SLAB GEOMETRY ANALYSIS AND NUMERICAL RESULTS

Thus far we have demonstrated that “acceleration” equations can be derived, for virtually any
transport differencing scheme regardless of geometry or mesh shape, by using a “coarse-mesh”
angular flux approximation on cell boundaries. We have given the details of this derivation for two
particular cases. However, we have yet to show that the “acceleration” equations so derived will
actually accelerate the transport iteration.

In this section we present results from a Fourier analysis of a simple model problem (infinite
medium, constant mesh spacing, constant cross section, isotropic scattering) for various discretization
schemes and two different BPA methods. The Fourier analysis method is taken from LarsenS,
although the procedural details used here are somewhat different (and considerably simpler). We also
present numerical results- from a model-like problem which confirm the predictions of the analysis.
Finally, we present numerical results from a non-model-like problem which agree with the observation
made by previous researchers: despite the fact that the analysis is rigorously valid only for the model
problem, its predictions appear to hold for all problems!4.15,

A. Fourier Analysis

We begin with the discretized transport equation (6), rewritten here for slab geometry in a
slightly different form:

04172 = Tydel!  + TorMaic12?1? + To W12 + gy (28a)

Wil 22 = Rop b0+ Rpe Weinip2 + spy (28b)
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Yot = R_0d  + Rp M iup™V? + spy (28c)

where we have separated the boundary angular fluxes into right-directed (‘+’ subscript) and lefi-
directed (‘- subscript) vectors, and split the matrices accordingly. (Note that if we assume material
properties are constant, as will be necessary for our model problem analysis, we may write the T and
R matrices without cell indices i.) Equations (28) hold for virtually any slab-geometry transport
differencing scheme, and the same will be true of the Fourier analysis performed here.

Given eqns. (28) as our starting point, the first 3 steps of our 4-step BPA procedure will give the
following:

foih'1 = TIv (Qoih-l - Qoil) + [Tb+in<—c+] h+i—l/2[+1 + [Tb—ipﬁ—c-i] tl-i+1/2l+1 (293)

Biiinf! = [Peerr Rua] @0l — 06D + [Pocrs Row Precel Biicip'! (290)

b—i—lﬂl+l = [Pc(—f— Rv—] (Qoi“-1 - Qotj) + [Pcf—f— Rb— Pf(—c—-] b_--i+1/21+1 (290)
where 471 = il — 92 .

To begin the analysis, we propose the following Fourier ansatz:

@of*12 — 012) = @l Aeri, o= -, (30a)
Wair1241? - Wainiph12) = of gy eMivi (30b)
@0 — §oi 1) = W/ BeMi (30c)

b1 = beiniph) = @fdi eMinn (30d)

Our objective is to find an expression for the eigenvalue w as a function of the Fourier parameter A. If
we subtract successive iterates of eqns. (28) and introduce our ansatz into the result, we obtain

A =T,B + Tp,a,e/™M2 + T, a g2 (31a)
a, M2 = R,,B + Ry a,e/M2, (31b)
ae/M2 = R,_B + Ry a2, (31c)

where h is the (constant) mesh spacing x;,1 — X;_;». These equations are easily solved for A:

A = XB (32)

where X = (T, + Ty lel-Ry,J'R,, + Ty [ & -Ry]J1R,_},
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£ = e/hh,

€ = eJ/M

Similarly, if we subtract successive iterates of egns. (29) and insert the ansatz we obtain

(wB ‘A) = Tv (w-1)B + [Tb+ Pf(——c+] d. eV 4 [Tb— Pf(——c—] d e/An/2 , (33a)
d, eAh2 = [Pegr RyJ(@-1)B + [Pegy Ry Precildye¥ AhZ (33b)
d esM2 = [Pecr-RyJ(@-1)B + [Peep Ry P ]Jd g2, (33¢c)

which is easily manipulated to yield:
(wB-4A) = (w-1DZB, (34)

where Z = {Ty + [TpsPregcillel = Pecgs Ry Prc )]t [Pees Ryyl
+ [Tb— Pf(—c—][ el - (Pct—-f— Rb— Pf(——o-)]-l [Pcc—f- Rv—] }

Substituting equation (32) into equation (34) gives our desired result:

N-zZ1'' (Xx-Z]B = wB. (35)

That is, w is actually the set of eigenvalues of the matrix [I — Z]‘l[X — Z]. Note that the matrices Z
and X, and hence the eigenvalues ®, depend on the parameter 6 = Ah.

We have written a computer code which performs the above analysis for virtually arbitrary spatial
discretization schemes for the (slab-geometry) discrete-ordinates transport equation. For any given
value of h and any given quadrature, the code performs a search, over all 6 € (0,2x) and all c € [0,1),
for the maximum eigenvalue, which is termed the spectral radius for that mesh size and quadrature.
The code accepts from a subroutine the “T"” and “R” matrices which appear in the above formulas; the
projection matrices P__¢ and Pg_ are provided by another subroutine. Thus, performing the analysis
for a given spatal discretization simply involves plugging in the subroutine which gives the “T” and
“R” matrices for that discretization. Likewise, performing the analysis for any particular BPA scheme
simply involves plugging in the appropriate projection-matrix subroutine.

We have performed this analysis for the diamond differencing?’ (DD), step differencing!4 (SD),
linear discontinuous?? (LD), and linear moments28 (LM) spanal discretization schemes, for both the
“double-Pp” (DP0) and “double-P{” (DP1) acceleration methods which were described in Secton III.
The results are summarized in Tables I and II and Figures [-IV. Table I gives the maximum value of
w/c over all h € (0,), ¢ € [0,1), and 6 € (0,27), as a function of quadrature order, for three
different DPQ projections. (Standard Gauss-Legendre quadrature sets were used.) Table IT gives the
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same information for four different DP1 projections, for standard quadratures (Spy) as well as
“double” quadratures (DSyp;). For every method, every mesh size, and every quadrature, the
maximum value of w/c occurred at c=1.

The first DPO method shown in Table I preserves half-range fluxes (i.e., the weighting function
in each half-range integral was 0 = 1); the second preserves partial currents (weighting function =
ul); the third preserves a combination of half-range first and second moments (weighting function =
i+ V3ep2). Tt is clear that the method chosen for projection makes a significant difference: the Oth-
moment method is unstable, the first-moment method gives @ < ¢/3, and the combination method
gives ® < 0.2247c for all but the DD discretization. This serves to illustrate two points. First, the
BPA method is quite flexible -- even after the coarse angular mesh is chosen, there is an unlimited
variety of projections which can be used to produce low-order equations. Second, it is probably not
possible to produce the optirmal projection by inspection or intuition; instead, we must experiment a bit
(here the Fourier analysis is an invaluable tool). (Incidentally, the ‘combination’ method arose from
requiring that the DPO acceleration perform exactly like DSA in the fine-mesh limit.)

Table [. Spectral Radius of Simpk Slab-Geometry DPO Schemes as a
Function of Quadrature Order: Various Projections.

Half-range moment preserved (weiglting function)
Quad- Oth (1.0) Tst (1) Combination (L + V3 12)

LD,LM, and SD DD LD, LM, and SD DD LD, LM, and SD DD

S2 0 0 0 0 0 0
S4 7974 1974 2268 2268 .1848 331
S8 1.918 1.918 3031 3031 2224 399
S16 3.373 3.373 3253 3253 2247 417
S32 5.163 5.163 3313 3313 2247 421

The DP1 methods (Table II) have two low-order angular unknowns per half-space; hence two
“characteristics” of the fine-mesh flux can be “preserved”. We again chose half-range moments, and
experimented with four different combinations: Oth and 1st, Oth and 2nd, 1st and 2nd, and 1st and
3rd. Again, the method of projection (i.e., the chosen combination of moments) makes a difference in
performance, although all four methods appear to be stable and rapidly convergent.

Figures I-IV give p = (®0/C)ay, VS mesh size for the LD, LM, SD, and DD discretizations. Each
figure has analysis results from Larsen’s DSA scheme, a DPQ method, and a DP1 method. Also,
Figure [ contains numerical estimates of the spectral radius from a model-like problem (see Section B
below). All curves are for the S;¢ quadrature. The most striking feature of the BPA curves is that,
with the exception of the anomalous diamond-differenced (DD) case, the spectral radius monotonically

decreases with increasing mesh size. Intuitively, this is understandable since the low-order
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approximation takes place only on cell boundaries, and as the boundaries get farther apart they become
relatively less important. For example, as the mesh size increases the exiting flux from a region

depends more and more on the interior source and less on streaming from the opposite boundary. The

DD behavior is explainable by noting that for large meshes, “streaming” from the opposite boundary

begins to dominate rather than die out (the surface-to-surface transfer coefficients approach -1 instead

of 0).

Table II. Spectral Radius of Simpe Slab-Geometry DP1 Schemes as a
Function of Quadrature Order: Various Projections.

Half-range moments preserved (weighting functions)

Quad- ™00 Ist (10, 1) | Oth, 2nd (10, p?) | 1st, 2nd (1, u2) | Ist,3d (1, 1)
LD,LM,SD| DD |LD,LM,SD| DD |LD,LM,SD| DD |LD,LM,SD| DD

S4 0 0 0 0 0 0 0 0

S6 .0063 .0100 .0120 0166 .0100 043 0166 .063

S8 0151 .0215 .0268 0320 0215 073 0320 .095

S16 0431 0460 .0689 .0689 .0460 JA11 0586 130

S32 .0700 .0700 .1068 .1068 .0550 121 .0657 .140
DS2 0 0 0 0 0 0 0 0
DS3 0348 0503 .0616 .0666 .0503 125 0666 143
DS4 0624 .0609 .0987 0987 .0609 125 0730 143
DS8 .1047 1047 1546 1546 .0551 125 .0654 .143
DS16 1324 1324 .1943 1943 .0553 125 0656 143

Figure I. Spectral Radius vs. Mesh Size, LD, S-16.

0-25 b
4

0.20

o
-
W

Spectral Radus
o
S

0.05 |

& ANALYSIS, DSA

¢ ANALYSIS,

DPO (COMBINATION)

X NUMERICAL EST.,

DPO (COMBINATION)

¥ ANALYSIS,

0.00
0.001

0.010 0.100

1.000

Mesh size, mfp

10.000

DP1 (1ST & 2ND)

100.000

Figure II. Spectral Radius vs. Mesh Size, LM, S-16.
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Figure I1I. Spectral Radius vs. Mesh Size, SD, §-16. Figure IV. Spectral Radius vs. Mesh Size, DD, S-16.
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B. Numerical Results
Calculations were performed on a model-like problem (80 mean-free path homogeneous
slab with vacuum boundaries, c=1, constant cross-sections, isotropic scattering, source = 1 in some
meshes and O in others) in an attempt to verify that the Fourier analysis described above had been
coded correctly. The DPO BPA method was used to accelerate an LD discrete-ordinates code, and the
following spectral radius estimate was calculated at each iteration:

Il g+t — gt
_ Ot — 9o 2, (36)
” QOI—QOI'I “2
where | “2 indicates the L, norm:
g, = [Ze2] (37

Results from this numerical estimate of the spectral radius are plotted along with the analysis
predictions in Figure I. Agreement is good, leading us to conclude that the analysis was performed
and encoded correctly.

Since the analysis is strictly valid only for the model problem, we have also performed numerical
calculations (and p estimates) using a number of non-model-like problems. One of these is shown in
Figure V, and the results are summarized in Table ITI. In each case the numerically-estimated spectral
radius is lower than that predicted by the analysis; the same has been observed on many other
problems not shown here. Moreover, this has been observed by other researchers using different
numerical methods: the predictions of the model-problem analysis are remarkably accurate even for
complicated problems with varying mesh widths and cross-sections!415, Finally, we note that
numerical results obtained by Lawrence, using his DPO method (a partial-current preserver) with the
DD and LM schemes, are in agreement with the observations made herel9.
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Figure V. Reed’s Problem
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Table III. Numerical Estimates ofSpectral Radius vs. Mesh Size: Reed’s Problem

Mesh Size, cm (mfp) Iterations Estimated
Black Grey Vacuum | Source |Scattering to 10°¢ Spec. Radius
1.0(50) | 1.0(5) 200) |1.0¢L0) [{1.0(1.0 5 0.06
05125 (0525 ( 200 |1.01.0) |1.001.0) 5 0.06
0.2(10) 102(.0) | 2.0 [0.5(0.5) |0.5(0.5) 6 0.08
02(10) (02(1.0) | 20(0) [01(0.1) |1.0(1.0) 8 0.13

V. SUMMARY & CONCLUSIONS

A class of synthetic acceleration methods has been presented which obtains low-order equations
by projecting the transport angular flux onto a coarse mesh only on cell boundaries. The ultimate
objective of our work is to find an acceleration method which

1)  gives unconditional rapid convergence,

2) can be used regardless of geometry, mesh shape, or discretization scheme,
3) has easily-solved low-order equations, and

4) gives a converged solution identical to the unaccelerated solution.

We have shown that the new BPA methods are general with respect to geometry, mesh shape,
and discretization scheme, and that they give a solution identical to the unaccelerated solution. The
question of rapid convergence has been answered affirmatively, but only for slab geometry, in which
the simplest BPA method (DP0) was shown to give a spectral radius (p) bounded by ¢/3. We have
presented no results in higher geometries; however, we can argue that there exist BPA methods such
that unconditional rapid convergence can be attained in any geometry. As a trivial example, note that
immediate convergence (p=0) is obtained by using a “coarse” angular mesh which is identical to the
transport angular mesh.
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The remaining question is whether the low-order equations of a rapidly-convergent BPA method
can be solved efficiently. The equations are easily put into a form amenable to solution via iteration on
interface unknowns, but two things remain to be shown. First, the iteration on the low-order interface
unknowns must be shown to converge reasonably quickly, or else be amenable to some sort of
acceleration itself. Second, the number of low-order interface unknowns must be reasonably small
(which of course eleminates the trivial example cited above). We note that numerical results obtained
by Lawrence!? using his DPO method (only two angular unknowns per spatial unknown per cell
interface) in two and three dimensions are encouraging: not only was the accelerated iteration count
very low, but the red/black iterative scheme used to solve the low-order equations was reasonably
efficient. However, these results are from a limited set of test problems; further study is necessary
before any BPA scheme can be declared generally useful in two or three dimensions. Therefore, we
are analyzing the low-order iteration in XY geometry, and investigating the possibility of using
multigrid methods to accelerate it. We are also studying the question of how many low-order interface
unknowns are needed to produce a generally effective BPA scheme in XY geometry.

APPENDIX: FOUR-STEP BPA PROCEDURE -- THE GENERAL CASE

In Section II a four-step BPA derivaton was presented which was general with respect to
geometry and mesh shape, and essentially general with respect to discretization scheme. However, it
contained the assumption that the coarse-mesh boundary unknowns associated with each cell could be
divided into two distinct sets: one set which depended only on the incoming angular flux and another
which depended only on the outgoing angular flux. In this appendix we present the same derivation
with that assumption removed.

As before, we begin with the discretized transport equation written in first-flight response matrix

form:
012 = Tidd + T Wn 1?2 + sy (A.la)
Wouit12= R + RyfWpn 1?2 + s (A.1b)
with
Wi 12 = Z Hic) Your /12, (A2)

where Hi;

renumbering matrix which extracts the incoming flux to cell i
from the outgoing flux of the adjacent cell j,

> = sum over all cells j which are adjacent to cell ..
j@i
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As before we will define a vector of coarse-mesh boundary unknowns, and projection matrices which
take us back and forth between fine- and coarse-mesh function spaces, but here it is convenient to
define them a bit differently. First we note that

H;; luom‘,“m = angular flux leaving cell j and entering cell i,
Hj i Wou 12 = angular flux leaving cell i and entering cell .

Then we define our coarse-mesh boundary flux J;; on the surface between cells / and j as a projection
of the above two quantities:

L2 = L2 = Poegjei Hjei Mou 1+ Pocgie Hiej Wour /172, (A.3)

where P, ¢, ; = fine-to-coarse projection matrix for the surface between cells i
and j; gives contribution to coarse-mesh vector from the

fine-mesh flux going from cell i to cell j,

P.gij = fine-to-coarse projection matrix for the surface between cells
and j; gives contribution to coarse-mesh vector from the
fine-mesh flux going from cell j to cell i.

If we define the following shorthand notation,

[PH]j<—i = Pct-—fJ«—i Hj(—i ’
[PHJ,c;

Pee ficj Hiej,

then we can write eqn. (A.3) as follows:

L.jl+ 172

it

Lt = [PHLc; You 1P + [PH]icj Wou /12, (A4)
Note that the coarse-mesh unknowns are no longer subject to the restriction imposed in Section II.
As before, we define an incoming flux residual for each cell i:

Wres 112 = Wi 12— ,Z@ Picyj L2, (A.5)

where P, = coarse-to-fine “projection” matrix giving the coarse-mesh
approximation to the fine-mesh angular tlux entering cell i
from cell j.
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We are now ready to proceed with the four-step procedure.
Step 1 -- project onto coarse mesh. This simply involves making use of the above definitions
and operating on the discretized transport equation (A.1). The resultis:

Qoih'l/2 = Tvi QO!J + Tbi [M!res,i“-l/2 +k2@ iPi(—ikLkl+1/2] + §v,i (A-Ga)

[PH]J?—" woui,i“-‘llz = [PH]j(—i Ry §of
+ [PH];; Ry} [Wees i1+112 +k2 Pi i Li+12] + [PH]j Sp, (A.6b)
@i ’
where (A.6b) holds for all j such that cell j shares a surface with cell i.

Step 2 -- define acceleration equations. As before, this involves changing iteration indices to /+1
on all terms except the incoming residual:

Ot = T @it + Ty Wees 12+ k% iPi(—ik Tl + sy (A7a)
[PH)ji Wourd*! = [PH]ji Ry o
+ [PH)ji Ry [Wres 14172 + ‘% Piicdidtl] + [PHljsp; (A.7b)

Step 3 -- subtract (accel. egns. — unaccel. eqns.). Subtracting eqns. (A.7) — (A.6) yields:

L = TiEH +806MD + T %ipi(—ikb;k“'l (A.8a)
di = [PHJ Ry G + 80,/*12) + [PHJj;Ry %@Pj«—ik byl (A.8b)
where s = 01 - 012,
S0 = Gl - gt
die ! = [PHlciMou*' — [PHei Wou 12 5
DUJH = L.jl+l — L.J1+1/2

= dj(_‘.l‘f-l + d: I+1

= =éf

= Djil+1 .

Step 4 -- put in form convenient for solution. We solve eqn. (A.8a) for f,/*1 and insert the result
into eqn. (A.8b) to obtain:



- 22 -

dj(—le = Mvj«-—i @oi“’l/z + Mbj(——i kZ@ ‘Pi(—ik b«'klﬂ » (A9)
where M,ji = [PHl,;Ry + [PHJiRY 0-Tl Ty,
Mye; = [PHL Ry + [PHLRy[I-TA L Ty

Next, we write an equation identical to (A.9) except that it is for the quantity d;#1:
die 1 = M) 8012 + My k%) P e b+t (A.10)
J
and add eqns. (A.9) and (A.10) to obtain, finally,

bt = My 8012 + My kz@ Pic i byt
13

+ My 80/412 + My k%jpf*-fk byt (AL

Equation (A.11) can presurnably be solved by iteration on the interface quanties b;#+1, after which
eqn. (A.8a) can be invoked to give the scalar-flux corrections f /1.
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